Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell Proteomics. 2009 Feb;8(2):365-79. doi: 10.1074/mcp.M800332-MCP200. Epub 2008 Oct 28.

Predicting protein post-translational modifications using meta-analysis of proteome scale data sets.

Author information

  • 1Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. dschwartz@genetics.med.harvard.edu

Abstract

Protein post-translational modifications are an important biological regulatory mechanism, and the rate of their discovery using high throughput techniques is rapidly increasingly. To make use of this wealth of sequence data, we introduce a new general strategy designed to predict a variety of post-translational modifications in several organisms. We used the motif-x program to determine phosphorylation motifs in yeast, fly, mouse, and man and lysine acetylation motifs in man. These motifs were then scanned against proteomic sequence data using a newly developed tool called scan-x to globally predict other potential modification sites within these organisms. 10-fold cross-validation was used to determine the sensitivity and minimum specificity for each set of predictions, all of which showed improvement over other available tools for phosphoprediction. New motif discovery is a byproduct of this approach, and the phosphorylation motif analyses provide strong evidence of evolutionary conservation of both known and novel kinase motifs.

PMID:
18974045
[PubMed - indexed for MEDLINE]
PMCID:
PMC2634583
Free PMC Article

Images from this publication.See all images (4)Free text

F ig . 1.
F ig . 2.
F ig . 3.
F ig . 4.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk