Display Settings:

Format

Send to:

Choose Destination
Langmuir. 2008 Dec 2;24(23):13312-20. doi: 10.1021/la8015222.

Dielectrophoretic assembly of metallodielectric Janus particles in AC electric fields.

Author information

  • 1Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA.

Abstract

"Janus" particles with two hemispheres of different polarizability or charge demonstrate a multitude of interesting effects in external electric fields. We reported earlier how particles with one metallic hemisphere and one dielectric hemisphere self-propel in low-frequency alternating current (AC) electric fields. Here, we demonstrate the assembly of such Janus particles driven by AC electric fields at frequencies above 10 kHz. We investigated the relation between field-induced dielectrophoretic force, field distribution, and structure of the assemblies. The phase space for electric field intensity and frequency was explored for particle concentrations large enough to form a monolayer on a glass surface between two gold electrodes. A rich variety of metallodielectric particle structures and dynamics were uncovered, which are very different from those obtained from directed assembly of plain dielectric or plain conductive particles under the action of fields of similar frequency and intensity. The metallodielectric particles assemble into new types of chain structures, where the metallized halves of neighboring particles align into lanes along the direction of the electric field, while the dielectric halves face in alternating direction. The staggered chains may assemble in various orientations to form different types of two-dimensional metallodielectric crystals. The experimental results on the formation of staggered chains are interpreted by means of numerical simulations of the electric energy of the system. The assembly of Janus metallodielectric particles may find applications in liquid-borne microcircuits and materials with directional electric and heat transfer.

PMID:
18973307
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk