Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17055-60. doi: 10.1073/pnas.0807765105. Epub 2008 Oct 29.

Escape from X chromosome inactivation is an intrinsic property of the Jarid1c locus.

Author information

  • 1Department of Biochemistry and Molecular Biology and Intercollege Graduate Program in Genetics, Pennsylvania State College of Medicine, Hershey, PA 17033, USA.

Abstract

Although most genes on one X chromosome in mammalian females are silenced by X inactivation, some "escape" X inactivation and are expressed from both active and inactive Xs. How these escape genes are transcribed from a largely inactivated chromosome is not fully understood, but underlying genomic sequences are likely involved. We developed a transgene approach to ask whether an escape locus is autonomous or is instead influenced by X chromosome location. Two BACs carrying the mouse Jarid1c gene and adjacent X-inactivated transcripts were randomly integrated into mouse XX embryonic stem cells. Four lines with single-copy, X-linked transgenes were identified, and each was inserted into regions that are normally X-inactivated. As expected for genes that are normally subject to X inactivation, transgene transcripts Tspyl2 and Iqsec2 were X-inactivated. However, allelic expression and RNA/DNA FISH indicate that transgenic Jarid1c escapes X inactivation. Therefore, transgenes at 4 different X locations recapitulate endogenous inactive X expression patterns. We conclude that escape from X inactivation is an intrinsic feature of the Jarid1c locus and functionally delimit this escape domain to the 112-kb maximum overlap of the BACs tested. Additionally, although extensive chromatin differences normally distinguish active and inactive loci, unmodified BACs direct proper inactive X expression patterns, establishing that primary DNA sequence alone, in a chromosome position-independent manner, is sufficient to determine X chromosome inactivation status. This transgene approach will enable further dissection of key elements of escape domains and allow rigorous testing of specific genomic sequences on inactive X expression.

PMID:
18971342
[PubMed - indexed for MEDLINE]
PMCID:
PMC2579377
Free PMC Article

Images from this publication.See all images (4)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk