Display Settings:

Format

Send to:

Choose Destination
J Biol Chem. 2008 Dec 26;283(52):36300-10. doi: 10.1074/jbc.M803196200. Epub 2008 Oct 28.

Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase.

Author information

  • 1Cartilage Molecular Genetics Group, Cartilage Biology and Orthopaedics Branch, NIAMS, National Institutes of Health, Bethesda, Maryland 20892, USA.

Abstract

SirT1 is an NAD-dependent histone deacetylase that regulates gene expression, differentiation, development, and organism life span. Here we investigate the function of SirT1 in human chondrocytes derived from osteoarthritic patients. Elevation of SirT1 protein levels or activity in these chondrocytes led to a dramatic increase in cartilage-specific gene expression, whereas a reduction in SirT1 levels or activity significantly lowered cartilage gene expression. SirT1 associated with the cartilage-specific transcription factor Sox9, enhancing transcription from the collagen 2(alpha1) promoter in a Sox9-dependent fashion. Consistent with this association, SirT1 was targeted to the collagen 2(alpha1) enhancer and promoter, which in turn recruited the coactivators GCN5, PGC1alpha, and p300. This led to elevated marks of active chromatin within the promoter; that is, acetylated histone K9/K14 and histone H4K5 as well as trimethylated histone H3K4. Finally, alterations in the NAD salvage pathway enzyme nicotinamide phosphoribosyltransferase led to changes in NAD levels, SirT activity, and cartilage-specific gene expression in human chondrocytes. SirT1, nicotinamide phosphoribosyltransferase, and NAD may, therefore, provide a positive function in human cartilage by elevating expression of genes encoding cartilage extracellular matrix.

PMID:
18957417
[PubMed - indexed for MEDLINE]
PMCID:
PMC2605985
Free PMC Article

Images from this publication.See all images (6)Free text

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk