Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Am Med Inform Assoc. 2009 Jan-Feb;16(1):89-102. doi: 10.1197/jamia.M2541. Epub 2008 Oct 24.

Auditing the semantic completeness of SNOMED CT using formal concept analysis.

Author information

  • 1Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA. jiang.guoqian@mayo.edu

Abstract

OBJECTIVE:

This study sought to develop and evaluate an approach for auditing the semantic completeness of the SNOMED CT contents using a formal concept analysis (FCA)-based model.

DESIGN:

We developed a model for formalizing the normal forms of SNOMED CT expressions using FCA. Anonymous nodes, identified through the analyses, were retrieved from the model for evaluation. Two quasi-Poisson regression models were developed to test whether anonymous nodes can evaluate the semantic completeness of SNOMED CT contents (Model 1), and for testing whether such completeness differs between 2 clinical domains (Model 2). The data were randomly sampled from all the contexts that could be formed in the 2 largest domains: Procedure and Clinical Finding. Case studies (n = 4) were performed on randomly selected anonymous node samples for validation.

MEASUREMENTS:

In Model 1, the outcome variable is the number of fully defined concepts within a context, while the explanatory variables are the number of lattice nodes and the number of anonymous nodes. In Model 2, the outcome variable is the number of anonymous nodes and the explanatory variables are the number of lattice nodes and a binary category for domain (Procedure/Clinical Finding).

RESULTS:

A total of 5,450 contexts from the 2 domains were collected for analyses. Our findings revealed that the number of anonymous nodes had a significant negative correlation with the number of fully defined concepts within a context (p < 0.001). Further, the Clinical Finding domain had fewer anonymous nodes than the Procedure domain (p < 0.001). Case studies demonstrated that the anonymous nodes are an effective index for auditing SNOMED CT.

CONCLUSION:

The anonymous nodes retrieved from FCA-based analyses are a candidate proxy for the semantic completeness of the SNOMED CT contents. Our novel FCA-based approach can be useful for auditing the semantic completeness of SNOMED CT contents, or any large ontology, within or across domains.

PMID:
18952949
[PubMed - indexed for MEDLINE]
PMCID:
PMC2605587
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk