Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 2008 Dec;190(24):7932-8. doi: 10.1128/JB.01008-08. Epub 2008 Oct 17.

Induction of the galactose enzymes in Escherichia coli is independent of the C-1-hydroxyl optical configuration of the inducer D-galactose.

Author information

  • 1Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA.

Abstract

The two optical forms of aldohexose galactose differing at the C-1 position, alpha-D-galactose and beta-D-galactose, are widespread in nature. The two anomers also occur in di- and polysaccharides, as well as in glycoconjugates. The anomeric form of D-galactose, when present in complex carbohydrates, e.g., cell wall, glycoproteins, and glycolipids, is specific. Their interconversion occurs as monomers and is effected by the enzyme mutarotase (aldose-1-epimerase). Mutarotase and other D-galactose-metabolizing enzymes are coded by genes that constitute an operon in Escherichia coli. The operon is repressed by the repressor GalR and induced by D-galactose. Since, depending on the carbon source during growth, the cell can make only one of the two anomers of D-galactose, the cell must also convert one anomer to the other for use in specific biosynthetic pathways. Thus, it is imperative that induction of the gal operon, specifically the mutarotase, be achievable by either anomer of D-galactose. Here we report in vivo and in vitro experiments showing that both alpha-D-galactose and beta-D-galactose are capable of inducing transcription of the gal operon with equal efficiency and kinetics. Whereas all substitutions at the C-1 position in the alpha configuration inactivate the induction capacity of the sugar, the effect of substitutions in the beta configuration varies depending upon the nature of the substitution; methyl and phenyl derivatives induce weakly, but the glucosyl derivative does not.

PMID:
18931131
[PubMed - indexed for MEDLINE]
PMCID:
PMC2593240
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk