Format

Send to:

Choose Destination
See comment in PubMed Commons below
PLoS One. 2008;3(10):e3414. doi: 10.1371/journal.pone.0003414. Epub 2008 Oct 15.

Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas.

Author information

  • 1The Key Laboratory for Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, PR China.

Erratum in

  • PLoS ONE. 2008;3(11). doi: 10.1371/annotation/5a7fb62a-94b0-4a9e-9031-b391502df41a.
  • PLoS ONE. 2008;3(11). doi: 10.1371/annotation/a7561dde-3b04-4fd9-9267-463b23cc7dd0.
  • PLoS ONE. 2008;3(11).doi.org/10.1371/annotation/db7652dc-4328-48ea-9244-67e831ae0e0e.

Abstract

BACKGROUND:

Kuntiz-type toxins (KTTs) have been found in the venom of animals such as snake, cone snail and sea anemone. The main ancestral function of Kunitz-type proteins was the inhibition of a diverse array of serine proteases, while toxic activities (such as ion-channel blocking) were developed under a variety of Darwinian selection pressures. How new functions were grafted onto an old protein scaffold and what effect Darwinian selection pressures had on KTT evolution remains a puzzle.

PRINCIPAL FINDINGS:

Here we report the presence of a new superfamily of ktts in spiders (TARANTULAS: Ornithoctonus huwena and Ornithoctonus hainana), which share low sequence similarity to known KTTs and is clustered in a distinct clade in the phylogenetic tree of KTT evolution. The representative molecule of spider KTTs, HWTX-XI, purified from the venom of O. huwena, is a bi-functional protein which is a very potent trypsin inhibitor (about 30-fold more strong than BPTI) as well as a weak Kv1.1 potassium channel blocker. Structural analysis of HWTX-XI in 3-D by NMR together with comparative function analysis of 18 expressed mutants of this toxin revealed two separate sites, corresponding to these two activities, located on the two ends of the cone-shape molecule of HWTX-XI. Comparison of non-synonymous/synonymous mutation ratios (omega) for each site in spider and snake KTTs, as well as PBTI like body Kunitz proteins revealed high Darwinian selection pressure on the binding sites for Kv channels and serine proteases in snake, while only on the proteases in spider and none detected in body proteins, suggesting different rates and patterns of evolution among them. The results also revealed a series of key events in the history of spider KTT evolution, including the formation of a novel KTT family (named sub-Kuntiz-type toxins) derived from the ancestral native KTTs with the loss of the second disulfide bridge accompanied by several dramatic sequence modifications.

CONCLUSIONS/SIGNIFICANCE:

These finding illustrate that the two activity sites of Kunitz-type toxins are functionally and evolutionally independent and provide new insights into effects of Darwinian selection pressures on KTT evolution, and mechanisms by which new functions can be grafted onto old protein scaffolds.

PMID:
18923708
[PubMed - indexed for MEDLINE]
PMCID:
PMC2561067
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk