Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Chromatogr A. 2008 Nov 14;1210(2):203-11. doi: 10.1016/j.chroma.2008.09.073. Epub 2008 Sep 27.

Use of thermal desorption gas chromatography-olfactometry/mass spectrometry for the comparison of identified and unidentified odor active compounds emitted from building products containing linseed oil.

Author information

  • 1New Tecnologies, National Research Centre for the Working Environment, Copenhagen DK-2100, Denmark. pac@nrcwe.dk

Abstract

The emission of odor active volatile organic compounds (VOCs) from a floor oil based on linseed oil, the linseed oil itself and a low-odor linseed oil was investigated by thermal desorption gas chromatography combined with olfactometry and mass spectrometry (TD-GC-O/MS). The oils were applied to filters and conditioned in the micro emission cell, FLEC, for 1-3days at ambient temperature, an air exchange rate of 26.9h(-1) and a 30% relative humidity. These conditions resulted in dynamic headspace concentrations and composition of the odor active VOCs that may be similar to real indoor setting. Emission samples for TD-GC-O/MS analysis from the FLEC were on Tenax TA. Although many volatile VOCs were detected by MS, only the odor active VOCs are reported here. In total, 142 odor active VOCs were detected in the emissions from the oils. About 50 of the odor active VOCs were identified or tentatively identified by GC-MS. While 92 VOCs were detected from the oil used in the floor oil, only 13 were detected in the low-odor linseed oil. The major odor active VOCs were aldehydes and carboxylic acids. Spearmen rank correlation of the GC-O profiles showed that the odor profile of the linseed oil likely influenced the odor profile of the floor oil based on this linseed oil.

PMID:
18922536
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk