Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Dev Dyn. 2008 Nov;237(11):3102-14. doi: 10.1002/dvdy.21750.

MAP3Ks as central regulators of cell fate during development.

Author information

  • 1Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA.

Abstract

The cytoplasmic serine/threonine kinases transduce extracellular signals into regulatory events that impact cellular responses. The induction of one kinase triggers the activation of several downstream kinases, leading to the regulation of transcription factors to affect gene function. This arrangement allows for the kinase cascade to be amplified, and integrated according to the cellular context. An upstream mitogen or growth factor signal initiates a module of three kinases: a mitogen-activated protein (MAP) kinase kinase kinase (MAPKKK; e.g., Raf) that phosphorylates and activates a MAP kinase kinase (MAPKK; e.g., MEK) and finally activation of MAP kinase (MAPK; e.g., ERK). Thus, this MAP3K-MAP2K-MAPK module represents critical effectors that regulate extracellular stimuli into cellular responses, such as differentiation, proliferation, and apoptosis all of which function during development. There are 21 characterized MAP3Ks that activate known MAP2Ks, and they function in many aspects of developmental biology. This review summarizes known transduction routes linked to each MAP3K and highlights mouse models that provide clues to their physiological functions. This perspective reveals that some of these MAP3K effectors may have redundant functions, and also serve as unique nexus depending on the context of the signaling pathway.

Copyright (c) 2008 Wiley-Liss, Inc.

PMID:
18855897
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk