Display Settings:

Format

Send to:

Choose Destination
Dev Cell. 2008 Oct;15(4):521-33. doi: 10.1016/j.devcel.2008.09.005.

Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development.

Author information

  • 1Department of Anatomy & Developmental Biology, Monash University, Wellington Road, Clayton VIC 3800, Melbourne, Australia.

Abstract

Energy generation by mitochondrial respiration is an absolute requirement for cardiac function. Here, we used a heart-specific conditional knockout approach to inactivate the X-linked gene encoding Holocytochrome c synthase (Hccs), an enzyme responsible for activation of respiratory cytochromes c and c1. Heterozygous knockout female mice were thus mosaic for Hccs function due to random X chromosome inactivation. In contrast to midgestational lethality of Hccs knockout males, heterozygous females appeared normal after birth. Analyses of heterozygous embryos revealed the expected 50:50 ratio of Hccs deficient to normal cardiac cells at midgestation; however, diseased tissue contributed progressively less over time and by birth represented only 10% of cardiac tissue volume. This change is accounted for by increased proliferation of remaining healthy cardiac cells resulting in a fully functional heart. These data reveal an impressive regenerative capacity of the fetal heart that can compensate for an effective loss of 50% of cardiac tissue.

PMID:
18854137
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk