Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Brain Behav Immun. 2009 Feb;23(2):225-31. doi: 10.1016/j.bbi.2008.09.010. Epub 2008 Sep 26.

Repeated social defeat activates dendritic cells and enhances Toll-like receptor dependent cytokine secretion.

Author information

  • 1Section of Oral Biology, College of Dentistry, The Ohio State University, Postle Hall, 305 W. 12th Avenue, Columbus, OH 43210, USA. powell.424@osu.edu


Stress hormones significantly impact dendritic cell (DC) activation and function, typically in a suppressive fashion. However, a social stressor termed social disruption (SDR) has been shown to induce an increase in inflammatory responses and a state of glucocorticoid resistance in splenic CD11b+ monocytes. These experiments were designed to determine the effects of SDR on DC activation, Toll-like receptor-induced cytokine secretion, and glucocorticoid sensitivity. Compared to cells obtained from control animals, splenic DCs from SDR mice displayed increased levels of MHC I, CD80, and CD44, indicative of an activated phenotype. In addition, DCs from SDR mice produced comparatively higher TNF-alpha, IL-6, and IL-10 in response to in vitro stimulation with LPS and CpG DNA. Increased amounts of TNF-alpha and IL-6 were also evident in SDR DC cultures stimulated with poly(I:C). Furthermore, as shown previously in CD11b+ monocytes, the CD11c+ DCs obtained from SDR mice were glucocorticoid resistant. Taken together, the data suggest that social stress, in the absence of any immune challenge, activates DCs, increases DC cytokine secretion in response to Toll-specific stimuli and renders DCs glucocorticoid resistant.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk