Send to

Choose Destination
See comment in PubMed Commons below
Bioresour Technol. 2009 Feb;100(3):1138-42. doi: 10.1016/j.biortech.2008.08.022. Epub 2008 Oct 8.

Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads.

Author information

  • 1Samsung Engineering Co Ltd, R&D Center, Suwon, Republic of Korea.


Calcium-alginate immobilized cell systems were developed for the detoxification and biodegradation of coumaphos, an organophosphate insecticide, and its hydrolysis products, chlorferon and diethlythiophosphate (DETP). Optimum bead loadings for bioreactor operation were found to be 200 g-beads/L for chlorferon degradation and 300 g-beads/L for DETP degradation. Using waste cattle dip (UCD) solution as substrate, the degradation rate for an immobilized consortium of chlorferon-degrading bacteria was five times greater than that for freely suspended cells, and hydrolysis of coumaphos by immobilized OPH(+)Escherichia coli was 2.5 times greater. The enhanced degradation of immobilized cells was due primarily to protection of the cells from inhibitory substances present in the UCD solution. In addition, physiological changes of the cells caused by Ca-alginate immobilization may have contributed to increased reaction rates. Degradation rates for repeated operations increased for successive batches indicating that cells became better adapted to the reaction conditions over time.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk