Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Heart Circ Physiol. 2008 Nov;295(5):H2172-7. doi: 10.1152/ajpheart.91437.2007. Epub 2008 Oct 3.

Myosin phosphorylation triggers actin polymerization in vascular smooth muscle.

Author information

  • 1Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA.


A variety of contractile stimuli increases actin polymerization, which is essential for smooth muscle contraction. However, the mechanism(s) of actin polymerization associated with smooth muscle contraction is not fully understood. We tested the hypothesis that phosphorylated myosin triggers actin polymerization. The present study was conducted in isolated intact or beta-escin-permeabilized rat small mesenteric arteries. Reductions in the 20-kDa myosin regulatory light chain (MLC20) phosphorylation were achieved by inhibiting MLC kinase with ML-7. Increases in MLC20 phosphorylation were achieved by inhibiting myosin light chain phosphatase with microcystin. Isometric force, the degree of actin polymerization as indicated by the F-actin-to-G-actin ratio, and MLC20 phosphorylation were determined. Reductions in MLC20 phosphorylation were associated with a decreased force development and actin polymerization. Increased MLC20 phosphorylation was associated with an increased force generation and actin polymerization. We also found that a heptapeptide that mimics the actin-binding motif of myosin II enhanced microcystin-induced force generation and actin polymerization without affecting MLC20 phosphorylation in beta-escin-permeabilized vessels. Collectively, our data demonstrate that MLC20 phosphorylation is capable of triggering actin polymerization. We further suggest that the binding of myosin to actin triggers actin polymerization and enhances the force development in arterial smooth muscle.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk