Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Drug Metab Dispos. 2009 Jan;37(1):97-105. doi: 10.1124/dmd.108.021964. Epub 2008 Oct 2.

Role of enzymatic N-hydroxylation and reduction in flutamide metabolite-induced liver toxicity.

Author information

  • 1Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.

Abstract

Flutamide is used for prostate cancer therapy but occasionally induces severe liver injury. Flutamide is hydrolyzed in the body into 5-amino-2-nitrobenzotrifluoride (FLU-1) and then further oxidized. In our previous study, N-hydroxy FLU-1 (FLU-1 N-OH) was detected in the urine of patients and exhibited cytotoxicity in rat primary hepatocytes. In the present study, we have assessed the roles of FLU-1 N-oxidation and hepatic glutathione (GSH) depletion in liver injury. FLU-1 (200 mg/kg p.o.) was administered to C57BL/6 mice for 5 days together with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) (3 mg/kg i.p.) for the first 3 days. Mice were fasted for the last 2 days to deplete hepatic GSH. Administration of FLU-1 alone did not affect serum alanine aminotransferase activities (ALT), whereas coadministration of FLU-1 and TCPOBOP significantly increased ALT in fasted mice but not in nonfasted mice. Microsomal FLU-1 N-hydroxylation was enhanced approximately 5 times by TCPOBOP treatment. Flutamide metabolite-protein adducts were detected in liver microsomes incubated with FLU-1 N-OH, but not with FLU-1 and flutamide, by immunoblotting using antiflutamide antiserum. In the presence of mouse liver cytosol, FLU-1 N-OH was reduced back into FLU-1. This enzymatic reduction required NAD(P)H as a cofactor. The reduction was enhanced by the coexistence of NAD(P)H and GSH, whereas it was markedly inhibited by allopurinol (20 microM). By using purified bovine xanthine oxidase, the reduction was observed in the presence of NAD(P)H. These results suggest that FLU-1 N-OH is involved in flutamide-induced hepatotoxicity and that cytosolic reduction of FLU-1 N-OH plays a major role in protection against flutamide-induced hepatotoxicity.

PMID:
18832480
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk