Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell Proteomics. 2009 Feb;8(2):232-44. doi: 10.1074/mcp.M800145-MCP200. Epub 2008 Sep 29.

Glycosylation specific for adhesion molecules in epidermis and its receptor revealed by glycoform-focused reverse genomics.

Author information

  • 1Graduate School of Advanced Life Science, Hokkaido University, Sapporo, Japan.

Abstract

Glycosylation of proteins greatly affects their structure and function, but traditional genomics and transcriptomics are not able to precisely capture tissue- or species-specific glycosylation patterns. We describe here a novel approach to link different "omics" data based on exhaustive quantitative glycomics of murine dermis and epidermis. We first examined the dermal and epidermal N-glycome of mouse by a recently established glycoblotting technique. We found that the Galalpha1-3Gal epitope was solely expressed in epidermis tissue and was preferentially attached to adhesion molecules in a glycosylation site-specific manner. Clarified glycomic and protemic information combined with publicly available microarray data sets allowed us to identify galectin-3 as a receptor of Galalpha1-3Gal epitope. These findings provide mechanistic insight into the causal connection between the genotype and the phenotype seen in alpha3GalT-1-deficient mice and transgenic mice expressing endo-beta-galactosidase C. Because humans do not possess the Galalpha1-3Gal structure on their tissues, we further examined the human dermal and epidermal N-glycome. Comparative glycomics revealed that the GalNAcbeta1-4GlcNAc (N,N'-diacetyllactosediamine) epitope, instead of the Galalpha1-3Gal epitope, was highly expressed in human epidermis.

PMID:
18824476
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk