Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Chem Res Toxicol. 2008 Nov;21(11):2164-71. doi: 10.1021/tx8002559.

Identification of adducts formed in the reactions of 5'-acetoxy-N'-nitrosonornicotine with deoxyadenosine, thymidine, and DNA.

Author information

  • 1Masonic Cancer Center, University of Minnesota, MMC 806, 420 Delaware Street Southeast, Minneapolis, Minnesota 55455, USA.

Abstract

N'-Nitrosonornicotine (NNN) is the most prevalent of the carcinogenic tobacco-specific nitrosamines found in all tobacco products. Previous studies have demonstrated that cytochrome P450-mediated 5'-hydroxylation of NNN is a major metabolic pathway leading to mutagenic products, but to date, DNA adducts formed by this pathway have been only partially characterized, and there have been no studies reported on adducts formed with bases other than dGuo. Because adducts with dAdo and dThd have been identified in the DNA of the livers of rats treated with the structurally related carcinogen N-nitrosopyrrolidine, we investigated dAdo and dThd adduct formation from 5'-acetoxyNNN (3), a stable precursor to 5'-hydroxyNNN (2). Reaction of 3 with dAdo gave diastereomeric products, which were identified by their spectral properties and LC-ESI-MS/MS-SRM analysis as N(6)-[5-(3-pyridyl)tetrahydrofuran-2-yl]dAdo (9). This adduct was further characterized by NaBH(3)CN reduction to N(6)-[4-hydroxy-4-(3-pyridyl)but-1-yl]dAdo (17). A second dAdo adduct was identified, after NaBH(3)CN treatment, as 6-[2-(3-pyridyl)pyrrolidin-1-yl]purine-2'-deoxyriboside (18). Reaction of 3 with dThd, followed by NaBH(3)CN reduction, gave O(2)-[4-(3-pyridyl)-4-hydroxybut-1-yl]thymidine (11). Adducts 9, 11, 17, and 18 were all identified by LC-ESI-MS/MS-SRM comparison to synthetic standards. The reaction of 3 with calf thymus DNA was then investigated. The DNA was enzymatically hydrolyzed to deoxyribonucleosides, and the resulting mixture was treated with NaBH(3)CN and analyzed by LC-ESI-MS/MS-SRM. Adducts 11, 17, and 18, as well as the previously identified dGuo adducts, were identified. The results of this study provide a more comprehensive picture of DNA adduct formation by the quantitatively important 5'-hydroxylation pathway of NNN and will facilitate investigation of the presence of these adducts in laboratory animals treated with NNN or in people who use tobacco products.

PMID:
18821782
[PubMed - indexed for MEDLINE]
PMCID:
PMC2646895
Free PMC Article

Images from this publication.See all images (10)Free text

Scheme 1
Scheme 4
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Write to the Help Desk