Format

Send to:

Choose Destination
See comment in PubMed Commons below
Clin Immunol. 2008 Dec;129(3):381-93. doi: 10.1016/j.clim.2008.07.027. Epub 2008 Sep 25.

Ethylenecarbodiimide-coupled allogeneic antigen presenting cells induce human CD4+ regulatory T cells.

Author information

  • 1Department of Pediatric Hematology/Oncology, Dr. von Haunersches Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337 Munich, Germany. michael.albert@med.uni-muenchen.de

Abstract

Adoptive transfer of naturally occurring CD4(+)CD25(+) regulatory T cells can tolerize transplantation alloresponses in animal models. However isolation of these cells in sufficient numbers from humans is cumbersome and prone to contamination with alloreactive CD25(+) T cells. Incubation of ethylenecarbodiimide-coupled antigen presenting cells (APC) with naïve T cells and antigen has been shown to induce tolerance in various experimental models. We therefore investigated whether ECDI-coupled allogeneic APC were able to induce an expandable human CD4(+) Treg population. CD4(+) and CD4(+) CD25(-) cells cultured for 5 days with ECDI-treated human PBMC exhibited potent suppressive capacity in a mixed lymphocyte reaction. Induction of these ECDI-Tregs was associated with up-regulation of Foxp3 mRNA and protein expression and they maintained high expression of CD62L and CD27 as well as low CD127 expression. ECDI-treated APC displayed reduced expression of the co-stimulatory signaling molecules CD40 and CD80, and failed to stimulate proliferation and cytokine secretion in co-cultured CD4(+) T cells. Restimulation in the presence of rapamycin and hrIL-2 led to expansion of ECDI-Tregs with increasing Foxp3 levels and suppressive activity significantly higher than expanded naturally occurring CD4(+)CD25(+) Tregs. In summary these findings support the hypothesis that ECDI-coupled APC can convert naïve CD4(+) T cells into functional Tregs with different phenotypic characteristics than naturally occurring CD4(+)CD25(+) Tregs. These inducible Tregs could provide a novel approach that might facilitate the translation of ex vivo generated and expanded Tregs into clinical settings.

PMID:
18819845
[PubMed - indexed for MEDLINE]
PMCID:
PMC3033601
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk