Send to

Choose Destination
See comment in PubMed Commons below
Magn Reson Med. 2008 Oct;60(4):934-44. doi: 10.1002/mrm.21707.

Effects of image noise in muscle diffusion tensor (DT)-MRI assessed using numerical simulations.

Author information

  • 1Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232-2675, USA.


Diffusion tensor (DT)-MRI studies of skeletal muscle provide information about muscle architecture, microstructure, and damage. However, the effects of noise, the diffusion weighting (b)-value, and partial volume artifacts on the estimation of the diffusion tensor (D) are unknown. This study investigated these issues using Monte Carlo simulations of 3 x 9 voxel regions of interest (ROIs) containing muscle, adipose tissue, and intermediate degrees of muscle volume fractions (f(M)). A total of 1000 simulations were performed for each of eight b-values and 11 SNR levels. The dependencies of the eigenvalues (lambda(1-3)), mean diffusivity (lambda), and fractional anisotropy (FA), and the angular deviation of the first eigenvector from its true value (alpha) were observed. For moderate b-values (b = 435-725 s/mm(2)) and f(M) = 1, an accuracy of 5% was obtained for lambda(1-3), lambda, and FA with an SNR of 25. An accuracy of 1% was obtained for lambda(1-3), lambda, and FA with f(M) = 1 and SNR = 50. For regions with f(M) = 8/9, 5% accuracy was obtained with SNR = 40. For alpha, SNRs of >or=25 and >or=45 were required for +/-4.5 degrees uncertainty with f(M) = 1 and f(M) = 0.5, respectively; SNR >or= 60 was required for +/-9 degrees uncertainty in single muscle voxels. These findings may influence the design and interpretation of DT-MRI studies of muscle microstructure, damage, and architecture.

(c) 2008 Wiley-Liss, Inc.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Write to the Help Desk