Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Phys Chem A. 2008 Oct 16;112(41):10185-92. doi: 10.1021/jp805311u. Epub 2008 Sep 25.

Kinetics and mechanism of the NCN + NO2 reaction studied by experiment and theory.

Author information

  • 1Department of Applied Chemistry and Center for Interdisciplinary Molecular Science, Chiao Tung University, Taiwan 30010, Taiwan.

Abstract

The rate constant for the NCN + NO 2 reaction has been measured by a laser photolysis/laser-induced fluorescence technique in the temperature range of 260-296 K at pressures between 100 and 500 Torr with He and N 2 as buffer gases. The NCN radical was produced from the photolysis of NCN 3 at 193 nm and monitored by laser-induced fluorescence with a dye laser at 329.01 nm. The rate constant was found to increase with pressure but decrease with temperature, indicating that the reaction occurs via a long-lived intermediate stabilized by collisions with buffer gas. The reaction mechanism and rate constant are also theoretically predicted for the temperature range of 200-2000 K and the He and N 2 pressure range of 10 (-4) Torr to 1000 atm based on dual-channel Rice-Ramsperger-Kassel-Marcus (RRKM) theory with the potential energy surface evaluated at the G2M//B3LYP/6-311+G(d) level. In the low-temperature range (<700 K), the most favorable reaction is the barrierless association channel that leads to the intermediate complex (NCN-NO 2). At high temperature, the direct O-abstraction reaction with a barrier of 9.8 kcal/mol becomes the dominant channel. The rate constant calculated by RRKM theory agrees reasonably well with experimental data.

PMID:
18816042
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk