Send to:

Choose Destination
See comment in PubMed Commons below
J Org Chem. 2008 Oct 17;73(20):7952-62. doi: 10.1021/jo801462r. Epub 2008 Sep 23.

Installation of electron-donating protective groups, a strategy for glycosylating unreactive thioglycosyl acceptors using the preactivation-based glycosylation method.

Author information

  • 1Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.


Preactivation-based chemoselective glycosylation is a powerful strategy for oligosaccharide synthesis with its successful application in assemblies of many complex oligosaccharides. However, difficulties were encountered in reactions where glycosyl donors bearing multiple electron-withdrawing groups failed to glycosylate hindered unreactive acceptors. In order to overcome this problem, it was discovered that the introduction of electron-donating protective groups onto the glycosyl donors can considerably enhance their glycosylating power, leading to productive glycosylations even with unreactive acceptors. This observation is quite general and can be extended to a wide range of glycosylation reactions, including one-pot syntheses of chondroitin and heparin trisaccharides. The structures of the reactive intermediates formed upon preactivation were determined through low-temperature NMR studies. It was found that for a donor with multiple electron-withdrawing groups, the glycosyl triflate was formed following preactivation, while the dioxalenium ion was the major intermediate with a donor bearing electron-donating protective groups. As donors were all cleanly preactivated prior to the addition of the acceptors, the observed reactivity difference between these donors was not due to selective activation encountered in the traditional armed-disarmed strategy. Rather, it was rationalized by the inherent internal energy difference between the reactive intermediates and associated oxacarbenium ion like transition states during nucleophilic attack by the acceptor.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Write to the Help Desk