Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Appl Physiol (1985). 2008 Nov;105(5):1519-26. doi: 10.1152/japplphysiol.90540.2008. Epub 2008 Sep 18.

Fat adaptation followed by carbohydrate restoration increases AMPK activity in skeletal muscle from trained humans.

Author information

  • 1Exercise Metabolism Group, School of Medical Sciences, RMIT University, Victoria, Australia.

Abstract

We have previously reported that 5 days of a high-fat diet followed by 1 day of high-carbohydrate intake (Fat-adapt) increased rates of fat oxidation and decreased rates of muscle glycogenolysis during submaximal cycling compared with consumption of an isoenergetic high-carbohydrate diet (HCHO) for 6 days (Burke et al. J Appl Physiol 89: 2413-2421, 2000; Stellingwerff et al. Am J Physiol Endocrinol Metab 290: E380-E388, 2006). To determine potential mechanisms underlying shifts in substrate selection, eight trained subjects performed Fat-adapt and HCHO. On day 7, subjects performed 1-h cycling at 70% peak O2 uptake. Muscle biopsies were taken immediately before and after exercise. Resting muscle glycogen content was similar between treatments, but muscle triglyceride levels were higher after Fat-adapt (P < 0.05). Resting AMPK-alpha1 and -alpha2 activity was higher after Fat-adapt (P = 0.02 and P = 0.05, respectively), while the phosphorylation of AMPK's downstream target, acetyl-CoA carboxylase (pACC at Ser221), tended to be elevated after Fat-adapt (P = 0.09). Both the respiratory exchange ratio (P < 0.01) and muscle glycogen utilization (P < 0.05) were lower during exercise after Fat-adapt. Exercise increased AMPK-alpha1 activity after HCHO (P = 0.03) but not Fat-adapt. Exercise was associated with an increase in pACC at Ser221 for both dietary treatments (P < 0.05), with postexercise pACC Ser221 higher after Fat-adapt (P = 0.02). In conclusion, compared with HCHO, Fat-adapt increased resting muscle triglyceride stores and resting AMPK-alpha1 and -alpha2 activity. Fat-adapt also resulted in higher rates of whole body fat oxidation, reduced muscle glycogenolysis, and attenuated the exercise-induced rise in AMPK-alpha1 and AMPK-alpha2 activity compared with HCHO. Our results demonstrate that AMPK-alpha1 and AMPK-alpha2 activity and fuel selection in skeletal muscle in response to exercise can be manipulated by diet and/or the interactive effects of diet and exercise training.

PMID:
18801964
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk