Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
BMC Biotechnol. 2008 Sep 15;8:71. doi: 10.1186/1472-6750-8-71.

Molecular analysis of chondrocytes cultured in agarose in response to dynamic compression.

Author information

  • 1UMR 5086, CNRS, Université de Lyon, IFR 128, IBCP, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors F-69367 Lyon FRANCE. c.bougault@ibcp.fr

Abstract

BACKGROUND:

Articular cartilage is exposed to high mechanical loads under normal physiological conditions and articular chondrocytes regulate the composition of cartilaginous matrix, in response to mechanical signals. However, the intracellular pathways involved in mechanotransduction are still being defined. Using the well-characterized chondrocyte/agarose model system and dynamic compression, we report protocols for preparing and characterizing constructs of murine chondrocytes and agarose, and analyzing the effect of compression on steady-state level of mRNA by RT-PCR, gene transcription by gene reporter assay, and phosphorylation state of signalling molecules by Western-blotting. The mouse model is of particular interest because of the availability of a large choice of bio-molecular tools suitable to study it, as well as genetically modified mice.

RESULTS:

Chondrocytes cultured in agarose for one week were surrounded by a newly synthesized pericellular matrix, as revealed by immunohistochemistry prior to compression experiments. This observation indicates that this model system is suitable to study the role of matrix molecules and trans-membrane receptors in cellular responsiveness to mechanical stress. The chondrocyte/agarose constructs were then submitted to dynamic compression with FX-4000C Flexercell Compression Plus System (Flexcell). After clearing proteins off agarose, Western-blotting analysis showed transient activation of Mitogen-activated protein kinases (MAPK) in response to dynamic compression. After assessment by capillary electrophoresis of the quality of RNA extracted from agarose, steady-state levels of mRNA expression was measured by real time PCR. We observed an up-regulation of cFos and cJun mRNA levels as a response to compression, in accordance with the mechanosensitive character observed for these two genes in other studies using cartilage explants submitted to compression. To explore further the biological response of mouse chondrocytes to the dynamic compression at the transcriptional level, we also developed an approach for monitoring changes in gene transcription in agarose culture by using reporter promoter constructs. A decrease in promoter activity of the gene coding for type II procollagen, the most abundant protein in cartilage, was observed in response to dynamic loading.

CONCLUSION:

The protocols developed here offer the possibility to perform an integrated analysis of the molecular mechanisms of mechanotransduction in chondrocytes, at the gene and protein level.

PMID:
18793425
[PubMed - indexed for MEDLINE]
PMCID:
PMC2556324
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk