Lower respiratory capacity in extraocular muscle mitochondria: evidence for intrinsic differences in mitochondrial composition and function

Invest Ophthalmol Vis Sci. 2009 Jan;50(1):180-6. doi: 10.1167/iovs.08-1911. Epub 2008 Sep 12.

Abstract

Purpose: The constant activity of the extraocular muscles is supported by abundant mitochondria. These organelles may enhance energy production by increasing the content of respiratory complexes. The authors tested the hypothesis that extraocular muscle mitochondria respire faster than do mitochondria from limb muscles because of the higher content of respiratory complexes.

Methods: Inner mitochondrial membrane density was determined by stereological analysis of triceps surae (a limb muscle) and extraocular muscles of adult male Sprague-Dawley rats. The authors measured respiration rates of isolated mitochondria using a Clark-type electrode. The activity of respiratory complexes I, II, and IV was determined by spectrophotometry. The content of respiratory complexes was estimated by Western blot.

Results: States 3, 4, and 5 respiration rates in extraocular muscle mitochondria were 40% to 60% lower than in limb muscle mitochondria. Extraocular muscle inner mitochondrial membrane density was similar to that of other skeletal muscles. Activity of complexes I and IV was lower in extraocular muscle mitochondria (approximately 50% the activity in triceps), but their content was approximately 15% to 30% higher. There was no difference in complex II content or activity or complex III content. Finally, complex V was less abundant in extraocular muscle mitochondria.

Conclusions: The results demonstrate that extraocular muscle mitochondria respire at slower rates than mitochondria from limb muscles, despite similar mitochondrial ultrastructure. Instead, differences were found in the activity (I, IV) and content (I, IV, V) of electron transport chain complexes. The discrepancy between activity and content of some complexes is suggestive of alternative subunit isoform expression in the extraocular muscles compared with limb muscles.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Abdominal Muscles / metabolism
  • Abdominal Muscles / ultrastructure
  • Animals
  • Blotting, Western
  • Electron Transport / physiology
  • Electron Transport Complex I / metabolism
  • Electron Transport Complex II / metabolism
  • Electron Transport Complex III / metabolism
  • Electron Transport Complex IV / metabolism
  • Energy Metabolism
  • Male
  • Membrane Potential, Mitochondrial
  • Mitochondria, Muscle / metabolism*
  • Mitochondrial Membranes / metabolism
  • Oculomotor Muscles / metabolism*
  • Oculomotor Muscles / ultrastructure
  • Oxygen Consumption / physiology*
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Electron Transport Complex II
  • Electron Transport Complex IV
  • Electron Transport Complex I
  • Electron Transport Complex III