Display Settings:

Format

Send to:

Choose Destination
Plant Physiol. 2008 Nov;148(3):1267-82. doi: 10.1104/pp.108.125062. Epub 2008 Sep 12.

RNA interference-mediated repression of MtCCD1 in mycorrhizal roots of Medicago truncatula causes accumulation of C27 apocarotenoids, shedding light on the functional role of CCD1.

Author information

  • 1Leibniz-Institut für Pflanzenbiochemie, Abteilung Sekundärstoffwechsel , D-06120 Halle, Germany.

Abstract

Tailoring carotenoids by plant carotenoid cleavage dioxygenases (CCDs) generates various bioactive apocarotenoids. Recombinant CCD1 has been shown to catalyze symmetrical cleavage of C(40) carotenoid substrates at 9,10 and 9',10' positions. The actual substrate(s) of the enzyme in planta, however, is still unknown. In this study, we have carried out RNA interference (RNAi)-mediated repression of a Medicago truncatula CCD1 gene in hairy roots colonized by the arbuscular mycorrhizal (AM) fungus Glomus intraradices. As a consequence, the normal AM-mediated accumulation of apocarotenoids (C(13) cyclohexenone and C(14) mycorradicin derivatives) was differentially modified. Mycorradicin derivatives were strongly reduced to 3% to 6% of the controls, while the cyclohexenone derivatives were only reduced to 30% to 47%. Concomitantly, a yellow-orange color appeared in RNAi roots. Based on ultraviolet light spectra and mass spectrometry analyses, the new compounds are C(27) apocarotenoic acid derivatives. These metabolic alterations did not lead to major changes in molecular markers of the AM symbiosis, although a moderate shift to more degenerating arbuscules was observed in RNAi roots. The unexpected outcome of the RNAi approach suggests C(27) apocarotenoids as the major substrates of CCD1 in mycorrhizal root cells. Moreover, literature data implicate C(27) apocarotenoid cleavage as the general functional role of CCD1 in planta. A revised scheme of plant carotenoid cleavage in two consecutive steps is proposed, in which CCD1 catalyzes only the second step in the cytosol (C(27)-->C(14)+C(13)), while the first step (C(40)-->C(27)+C(13)) may be catalyzed by CCD7 and/or CCD4 inside plastids.

PMID:
18790999
[PubMed - indexed for MEDLINE]
PMCID:
PMC2577242
Free PMC Article

Images from this publication.See all images (9)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk