Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14304-7. doi: 10.1073/pnas.0806118105. Epub 2008 Sep 11.

Surface-controlled dislocation multiplication in metal micropillars.

Author information

  • 1Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-4040, USA. cweinber@stanford.edu

Abstract

Understanding the plasticity and strength of crystalline materials in terms of the dynamics of microscopic defects has been a goal of materials research in the last 70 years. The size-dependent yield stress observed in recent experiments of submicrometer metallic pillars provides a unique opportunity to test our theoretical models, allowing the predictions from defect dynamics simulations to be directly compared with mechanical strength measurements. Although depletion of dislocations from submicrometer face-centered-cubic (FCC) pillars provides a plausible explanation of the observed size-effect, we predict multiplication of dislocations in body-centered-cubic (BCC) pillars through a series of molecular dynamics and dislocation dynamics simulations. Under the combined effects from the image stress and dislocation core structure, a dislocation nucleated from the surface of a BCC pillar generates one or more dislocations moving in the opposite direction before it exits from the surface. The process is repeatable so that a single nucleation event is able to produce a much larger amount of plastic deformation than that in FCC pillars. This self-multiplication mechanism suggests a need for a different explanation of the size dependence of yield stress in FCC and BCC pillars.

PMID:
18787126
[PubMed]
PMCID:
PMC2567194
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk