Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Biochim Biophys Acta. 2009 Apr;1789(4):250-60. doi: 10.1016/j.bbagrm.2008.07.013. Epub 2008 Aug 6.

Structure and evolution of the C. elegans embryonic endomesoderm network.

Author information

  • Department of Biology, University of California, Riverside, CA 92521, USA. mmaduro@ucr.edu

Abstract

The specification of the Caenorhabditis elegans endomesoderm has been the subject of study for more than 15 years. Specification of the 4-cell stage endomesoderm precursor, EMS, occurs as a result of the activation of a transcription factor cascade that starts with SKN-1, coupled with input from the Wnt/beta-catenin asymmetry pathway through the nuclear effector POP-1. As development proceeds, transiently-expressed cell fate factors are succeeded by stable, tissue/organ-specific regulators. The pathway is complex and uses motifs found in all transcriptional networks. Here, the regulators that function in the C. elegans endomesoderm network are described. An examination of the motifs in the network suggests how they may have evolved from simpler gene interactions. Flexibility in the network is evident from the multitude of parallel functions that have been identified and from apparent changes in parts of the corresponding network in Caenorhabditis briggsae. Overall, the complexities of C. elegans endomesoderm specification build a picture of a network that is robust, complex, and still evolving.

PMID:
18778800
[PubMed - indexed for MEDLINE]
PMCID:
PMC2688470
Free PMC Article

Images from this publication.See all images (3)Free text

FIG. 1
FIG. 2
FIG. 3
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk