Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Plant Physiol. 2008 Nov;148(3):1212-8. doi: 10.1104/pp.108.126284. Epub 2008 Sep 5.

Extremely high-level and rapid transient protein production in plants without the use of viral replication.

Author information

  • 1Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom.

Abstract

Plant-based overexpression of heterologous proteins has attracted much interest and development in recent years. To date, the most efficient vectors have been based on RNA virus-derived replicons. A system based on a disabled version of cowpea mosaic virus RNA-2 has been developed, which overcomes limitations on insert size and introduces biocontainment. This system involves positioning a gene of interest between the 5' leader sequence and 3' untranslated region (UTR) of RNA-2, thereby emulating a presumably stable mRNA for efficient translation. Thus far, the sequence of the 5' UTR has been preserved to maintain the ability of the modified RNA-2 to be replicated by RNA-1. However, high-level expression may be achieved in the absence of RNA-1-derived replication functions using Agrobacterium-mediated transient transformation. To investigate those features of the 5' UTR necessary for efficient expression, we have addressed the role of two AUG codons found within the 5' leader sequence upstream of the main initiation start site. Deletion of an in-frame start codon upstream of the main translation initiation site led to a massive increase in foreign protein accumulation. By 6 d postinfiltration, a number of unrelated proteins, including a full-size IgG and a self-assembling virus-like particle, were expressed to >10% and 20% of total extractable protein, respectively. Thus, this system provides an ideal vehicle for high-level expression that does not rely on viral replication of transcripts.

PMID:
18775971
[PubMed - indexed for MEDLINE]
PMCID:
PMC2577235
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk