Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Med (Berl). 2008 Dec;86(12):1379-94. doi: 10.1007/s00109-008-0399-y. Epub 2008 Sep 5.

Mechanisms of angiotensin II signaling on cytoskeleton of podocytes.

Author information

  • 1Department of Medicine D, Division of General Internal Medicine and Nephrology, University Hospital Muenster, Albert-Schweitzer-Str. 33, 48149 Muenster, Germany.

Abstract

Podocytes are significant in establishing the glomerular filtration barrier. Sustained rennin-angiotensin system (RAS) activation is crucial in the pathogenesis of podocyte injury and causes proteinuria. This study demonstrates that angiotensin II (Ang II) caused a reactive oxygen species (ROS)-dependent rearrangement of cortical F-actin and a migratory phenotype switch in cultured mouse podocytes with stable Ang II type 1 receptor (AT1R) expression. Activated small GTPase Rac-1 and phosphorylated ezrin/radixin/moesin (ERM) proteins provoked Ang II-induced F-actin cytoskeletal remodeling. This work also shows increased expression of Rac-1 and phosphorylated ERM proteins in cultured podocytes, and in glomeruli of podocyte-specific AT1R transgenic rats (Neph-hAT1 TGRs). The free radical scavenger DMTU eliminated Ang II-induced cell migration, ERM protein phosphorylation and cortical F-actin remodeling, indicating that ROS mediates the influence of Rac-1 on podocyte AT1R signaling. Heparin, a potent G-coupled protein kinase 2 inhibitor, was found to abolish ERM protein phosphorylation and cortical F-actin ring formation in Ang II-treated podocytes, indicating that phosphorylated ERM proteins are the cytoskeletal effector in AT1R signaling. Moreover, Ang II stimulation triggered down-regulation of alpha actinin-4 and reduced focal adhesion expression in podocytes. Signaling inhibitor assay of Ang II-treated podocytes reveals that Rac-1, RhoA, and F-actin reorganization were involved in expressional regulation of alpha actinin-4 in AT1R signaling. With persistent RAS activation, the Ang II-induced phenotype shifts from being dynamically stable to adaptively migratory, which may eventually exhaust podocytes with a high actin cytoskeletal turnover, causing podocyte depletion and focal segmental glomerulosclerosis.

PMID:
18773185
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk