Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Nurs. 2008 Sep-Oct;31(5):E40-6. doi: 10.1097/01.NCC.0000305765.34851.e9.

Implications of systematic review for breast cancer prediction.

Author information

  • 1College of Nursing, The Catholic University of Korea, Seoul, Korea. leesunmi@catholic.ac.kr

Abstract

Highly accurate and predictive models are essential components to promote early breast cancer screening in primary care or home care settings. This study was conducted to demonstrate how the relevant variable selection process influenced the predictive performance of the model to identify individuals at high risk for breast cancer. As such, as a strategy to increase the predictive performance of the models, a systematic review of previously published articles was conducted to select important risk factors for breast cancer. Through the systematic literature review and the application of variable selection methods, 13 final risk factors were identified. Logistic regression and naive Bayes predictive modeling techniques were used. Both models had higher predictive performances than previously developed models. It is believed that the systematic literature review process contributed to the identification of relevant variables and increased the predictive performance of the models. This study also implies that the naive Bayes was equivalent to and could be preferred over logistic regression.

PMID:
18772655
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Write to the Help Desk