Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Dev Cell. 2008 Sep;15(3):426-36. doi: 10.1016/j.devcel.2008.06.014. Epub 2008 Sep 4.

Multiple kinesin motors coordinate cytoplasmic RNA transport on a subpopulation of microtubules in Xenopus oocytes.

Author information

  • 1Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Box G-L268, Providence, RI 02912, USA.

Abstract

RNA localization is a widely conserved mechanism for generating cellular asymmetry. In Xenopus oocytes, microtubule-dependent transport of RNAs to the vegetal cortex underlies germ layer patterning. Although kinesin motors have been implicated in this process, the apparent polarity of the microtubule cytoskeleton has pointed instead to roles for minus-end-directed motors. To resolve this issue, we have analyzed participation of kinesin motors in vegetal RNA transport and identified a direct role for Xenopus kinesin-1. Moreover, in vivo interference and biochemical experiments reveal a key function for multiple motors, specifically kinesin-1 and kinesin-2, and suggest that these motors may interact during transport. Critically, we have discovered a subpopulation of microtubules with plus ends at the vegetal cortex, supporting roles for these kinesin motors in vegetal RNA transport. These results provide a new mechanistic basis for understanding directed RNA transport within the cytoplasm.

PMID:
18771961
[PubMed - indexed for MEDLINE]
PMCID:
PMC2581415
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk