Format

Send to:

Choose Destination
See comment in PubMed Commons below
Immunol Rev. 2008 Aug;224:166-82. doi: 10.1111/j.1600-065X.2008.00662.x.

Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways.

Author information

  • 1Department of Medicine, UCSF Diabetes Center, University of California, San Francisco, CA 94113, USA.

Abstract

Classically, the CD28/cytotoxic T-lymphocyte antigen-4 (CTLA-4) and B7 families of cell surface molecules regulate complex signaling pathways that profoundly affect T-cell responses. The recent identification and characterization of additional CD28 and B7 family members including programmed death-1 (PD-1), programmed death ligand-1 (PD-L1) (B7-H1), and PD-L2 (B7-DC) has added to the complexity and greater appreciation of how surface molecules control T-cell activation and peripheral tolerance. CD28/B7 interactions mediate co-stimulation and significantly enhance peripheral T-cell responses. CTLA-4, in contrast, interacting with the same B7 molecules, results in decreased T-lymphocyte activity and regulates the immune response. Similarly, PD-1 interactions with PD-L1 and PD-L2 downmodulate T-cell immune responses. Despite these similarities, the regulatory roles of the CTLA-4 and PD-1 pathways are distinct. This may be due, at least in part, to the differential expression patterns of the CTLA-4 and PD-1 ligands both temporally and spatially. This article examines the role of CTLA-4 and PD-1 in limiting autoreactivity and establishing peripheral self-tolerance with the hypothesis that CTLA-4 signals are required early in the lymph node during initiation of an immune response and PD-1 pathways act late at the tissue sites to limit T-cell activity.

PMID:
18759926
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk