Send to:

Choose Destination
See comment in PubMed Commons below
Neurochem Res. 2009 May;34(5):807-18. doi: 10.1007/s11064-008-9833-3. Epub 2008 Aug 27.

Synaptic vesicle-bound pyruvate kinase can support vesicular glutamate uptake.

Author information

  • 1Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School, BSRB, Ann Arbor, MI 48109-2200, USA.


Glucose metabolism is essential for normal brain function and plays a vital role in synaptic transmission. Recent evidence suggests that ATP synthesized locally by glycolysis, particularly via glyceraldehyde 3-phosphate dehydrogenase/3-phosphoglycerate kinase, is critical for synaptic transmission. We present evidence that ATP generated by synaptic vesicle-associated pyruvate kinase is harnessed to transport glutamate into synaptic vesicles. Isolated synaptic vesicles incorporated [(3)H]glutamate in the presence of phosphoenolpyruvate (PEP) and ADP. Pyruvate kinase activators and inhibitors stimulated and reduced PEP/ADP-dependent glutamate uptake, respectively. Membrane potential was also formed in the presence of pyruvate kinase activators. "ATP-trapping" experiments using hexokinase and glucose suggest that ATP produced by vesicle-associated pyruvate kinase is more readily used than exogenously added ATP. Other neurotransmitters such as GABA, dopamine, and serotonin were also taken up into crude synaptic vesicles in a PEP/ADP-dependent manner. The possibility that ATP locally generated by glycolysis supports vesicular accumulation of neurotransmitters is discussed.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Write to the Help Desk