Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Curr Biol. 2008 Aug 26;18(16):1249-55. doi: 10.1016/j.cub.2008.07.091.

Regulation of mitotic spindle asymmetry by SUMO and the spindle-assembly checkpoint in yeast.

Author information

  • 1Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology, Schafmattstrasse 18, 8093 Zurich, Switzerland.

Abstract

During mitosis, the kinetochore microtubules capture and segregate chromosomes, and the astral microtubules position the spindle within the cell. Although the spindle is symmetric, proper positioning of the spindle in asymmetrically dividing cells generally correlates with the formation of morphologically and structurally distinct asters [1]. In budding yeast, the spindle-orientation proteins Kar9 and dynein decorate only one aster of the metaphase spindle and direct it toward the bud [2, 3]. The mechanisms controlling the distribution of Kar9 and dynein remain unclear. Here, we show that SUMO regulates astral-microtubule function in at least two ways. First, Kar9 was sumoylated in vivo. Sumoylation and Cdk1-dependent phosphorylation of Kar9 independently promoted Kar9 asymmetry on the spindle. Second, proper regulation of kinetochore function by SUMO was also required for Kar9 asymmetry. Indeed, activation of the spindle-assembly checkpoint (SAC) due to SUMO and kinetochore defects promoted symmetric redistribution of Kar9 in a Mad2-dependent manner. The control of Kar9 distribution by the SAC was independent of Kar9 sumoylation and phosphorylation. Together, our data reveal that three independent mechanisms contribute to Kar9 asymmetry: Cdk1-dependent phosphorylation, sumoylation, and SAC signaling. Hence, the two seemingly independent spindle domains, kinetochores and astral microtubules, function in a tightly coordinated fashion.

PMID:
18722122
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk