Format

Send to:

Choose Destination
See comment in PubMed Commons below
Plant Cell Environ. 2008 Nov;31(11):1673-87. doi: 10.1111/j.1365-3040.2008.01874.x. Epub 2008 Sep 16.

Arabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated [CO2].

Author information

  • 1Department of Plant Biology, University of Illinois at Urbana - Champaign, Urbana, IL 61801, USA.

Abstract

A Free-Air CO(2) Enrichment (FACE) experiment compared the physiological parameters, transcript and metabolite profiles of Arabidopsis thaliana Columbia-0 (Col-0) and Cape Verde Island (Cvi-0) at ambient (approximately 0.375 mg g(-1)) and elevated (approximately 0.550 mg g(-1)) CO(2) ([CO(2)]). Photoassimilate pool sizes were enhanced in high [CO(2)] in an ecotype-specific manner. Short-term growth at elevated [CO(2)] stimulated carbon gain irrespective of down-regulation of plastid functions and altered expression of genes involved in nitrogen metabolism resembling patterns observed under N-deficiency. The study confirmed well-known characteristics, but the use of a time course, ecotypic genetic differences, metabolite analysis and the focus on clusters of functional categories provided new aspects about responses to elevated [CO(2)]. Longer-term Cvi-0 responded by down-regulating functions favouring carbon accumulation, and both ecotypes showed altered expression of genes for defence, redox control, transport, signalling, transcription and chromatin remodelling. Overall, carbon fixation with a smaller commitment of resources in elevated [CO(2)] appeared beneficial, with the extra C only partially utilized possibly due to disturbance of the C : N ratio. To different degrees, both ecotypes perceived elevated [CO(2)] as a metabolic perturbation that necessitated increased functions consuming or storing photoassimilate, with Cvi-0 emerging as more capable of acclimating. Elevated [CO(2)] in Arabidopsis favoured adjustments in reactive oxygen species (ROS) homeostasis and signalling that defined genotypic markers.

PMID:
18721265
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk