Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Phys Chem A. 2008 Sep 11;112(36):8430-5. doi: 10.1021/jp805306u. Epub 2008 Aug 15.

Validation of dispersion-corrected density functional theory approaches for ionic liquid systems.

Author information

  • 1Lehrstuhl für Theoretische Chemie, Wilhelm-Ostwald Institut für Physikalische and Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, D-04103 Leipzig, Germany.

Abstract

The performance of several general gradient approximation, meta general gradient approximation, and hybrid functionals is tested against Møller-Plesset perturbation theory second-order for ionic liquid systems. Additionally, two dispersion-corrected approaches (addition of van der Waals forces by a 1/r(6) term and employing a dispersion-corrected atom-center dispersion pseudopotential) were studied. For the 1-butyl-3-methylimidazolium cation neglecting dispersion results in different trends for structural stabilities. The two applied correction schemes for density functional theory improve the results tremendously. Investigating several 1-butyl-3-methylimidazolium dicianamide ion pairs shows a mean absolute deviation from Møller-Plesset perturbation theory of 35.7 kJ/mol for Hartree-Fock and up to 33.2 kJ/mol for the density functional theory methods. The dispersion-corrected methods reduce the mean absolute deviation to less than 10 kJ/mol. Comparing adducts of the 1-ethyl-3-methylimidazolium dicianamide ion pair with Diels-Alder educts (cyclopentadiene and methylacrylate) shows similar energetic differences as for the ion pairs. Furthermore large deviations in geometries for the intermolecular distances were found for the Hartree-Fock approach (mean absolute deviation: 190 pm) and density functional theory (mean absolute deviation up to 178 pm) while for the dispersion-corrected methods the mean absolute deviation is less than 50 pm.

PMID:
18707061
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk