Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Virol. 2008 Oct;82(20):9880-9. doi: 10.1128/JVI.00909-08. Epub 2008 Aug 13.

NF-kappaB signaling differentially regulates influenza virus RNA synthesis.

Author information

  • 1Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 615 Michael St., Room 105P, Atlanta, GA 30322, USA.

Abstract

The NF-kappaB signaling pathway has previously been shown to be required for efficient influenza A virus replication, although the molecular mechanism is not well understood. In this study, we identified a specific step of the influenza virus life cycle that is influenced by NF-kappaB signaling by using two known NF-kappaB inhibitors and a variety of influenza virus-specific assays. The results of time course experiments suggest that the NF-kappaB inhibitors Bay11-7082 and ammonium pyrrolidinedithiocarbamate inhibited an early postentry step of viral infection, but they did not appear to affect the nucleocytoplasmic trafficking of the viral ribonucleoprotein complex. Instead, we found that the levels of influenza virus genomic RNA (vRNA), but not the corresponding cRNA or mRNA, were specifically reduced by the inhibitors in virus-infected cells, indicating that NF-kappaB signaling is intimately involved in the vRNA synthesis. Furthermore, we showed that the NF-kappaB inhibitors specifically diminished influenza virus RNA transcription from the cRNA promoter but not from the vRNA promoter in a reporter assay, a result which is consistent with data obtained from virus-infected cells. The overexpression of the p65 NF-kappaB molecule could not only eliminate the inhibition but also activate influenza virus RNA transcription from the cRNA promoter. Finally, using p65-specific small interfering RNA, we have shown that p65 knockdown reduced the levels of influenza virus replication and vRNA synthesis. In summary, we have provided evidence showing, for the first time, that the NF-kappaB host signaling pathway can differentially regulate influenza virus RNA synthesis, which may also offer some new perspectives into understanding the host regulation of RNA synthesis by other RNA viruses.

PMID:
18701591
[PubMed - indexed for MEDLINE]
PMCID:
PMC2566266
Free PMC Article

Images from this publication.See all images (7)Free text

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk