Exciton storage by Mn(2+) in colloidal Mn(2+)-doped CdSe quantum dots

Nano Lett. 2008 Sep;8(9):2949-53. doi: 10.1021/nl801847e. Epub 2008 Aug 12.

Abstract

Colloidal Mn (2+)-doped CdSe quantum dots showing long excitonic photoluminescence decay times of up to tau exc = 15 mus at temperatures over 100 K are described. These decay times exceed those of undoped CdSe quantum dots by approximately 10 (3) and are shown to arise from the creation of excitons by back energy transfer from excited Mn (2+) dopant ions. A kinetic model describing thermal equilibrium between Mn (2+ 4)T 1 and CdSe excitonic excited states reproduces the experimental observations and reveals that, for some quantum dots, excitons can emit with near unity probability despite being approximately 100 meV above the Mn (2+ 4)T 1 state. The effect of Mn (2+) doping on CdSe quantum dot luminescence at high temperatures is thus completely opposite from that at low temperatures described previously.