Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11927-32. doi: 10.1073/pnas.0711752105. Epub 2008 Aug 12.

The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins.

Author information

  • 1Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA.


Regulation of bacterial iron homeostasis is often controlled by the iron-sensing ferric uptake repressor (Fur). The Bacillus subtilis Fur protein acts as an iron-dependent repressor for siderophore biosynthesis and iron transport proteins. Here, we demonstrate that Fur also coordinates an iron-sparing response that acts to repress the expression of iron-rich proteins when iron is limiting. When Fur is inactive, numerous iron-containing proteins are down-regulated, including succinate dehydrogenase, aconitase, cytochromes, and biosynthetic enzymes for heme, cysteine, and branched chain amino acids. As a result, a fur mutant grows slowly in a variety of nutrient conditions. Depending on the growth medium, rapid growth can be restored by mutations in one or more of the molecular effectors of the iron-sparing response. These effectors include the products of three Fur-regulated operons that encode a small RNA (FsrA) and three small, basic proteins (FbpA, FbpB, and FbpC). Extensive complementarity between FsrA and the leader region of the succinate dehydrogenase operon is consistent with an RNA-mediated translational repression mechanism for this target. Thus, iron deprivation in B. subtilis activates pathways to remodel the proteome to preserve iron for the most critical cellular functions.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk