Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Hum Genet. 2008 Sep;83(3):311-21. doi: 10.1016/j.ajhg.2008.06.024. Epub 2008 Aug 7.

Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data.

Author information

  • 1Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.

Abstract

Although whole-genome association studies using tagSNPs are a powerful approach for detecting common variants, they are underpowered for detecting associations with rare variants. Recent studies have demonstrated that common diseases can be due to functional variants with a wide spectrum of allele frequencies, ranging from rare to common. An effective way to identify rare variants is through direct sequencing. The development of cost-effective sequencing technologies enables association studies to use sequence data from candidate genes and, in the future, from the entire genome. Although methods used for analysis of common variants are applicable to sequence data, their performance might not be optimal. In this study, it is shown that the collapsing method, which involves collapsing genotypes across variants and applying a univariate test, is powerful for analyzing rare variants, whereas multivariate analysis is robust against inclusion of noncausal variants. Both methods are superior to analyzing each variant individually with univariate tests. In order to unify the advantages of both collapsing and multiple-marker tests, we developed the Combined Multivariate and Collapsing (CMC) method and demonstrated that the CMC method is both powerful and robust. The CMC method can be applied to either candidate-gene or whole-genome sequence data.

PMID:
18691683
[PubMed - indexed for MEDLINE]
PMCID:
PMC2842185
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk