Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Thromb Res. 2008;122 Suppl 1:S23-6. doi: 10.1016/S0049-3848(08)70014-8.

Blood clotting reactions on nanoscale phospholipid bilayers.

Author information

  • 1Departments of Biochemistry, Chemistry and Pharmacology, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 1217263, USA. jhmorris@uiuc.edu

Abstract

Blood clotting reactions, such as those catalyzed by the tissue factor:factor VIIa complex (TF:FVIIa), assemble on membrane surfaces containing anionic phospholipids such as phosphatidylserine (PS). In fact, membrane binding is critical for the function of most of the steps in the blood clotting cascade. In spite of this, our understanding of how the membrane contributes to catalysis, or even how these proteins interact with phospholipids, is incomplete. Making matters more complicated, membranes containing mixtures of PS and neutral phospholipids are known to spontaneously form PS-rich membrane microdomains in the presence of plasma concentrations of calcium ions, and it is likely that blood-clotting proteases such as TF:FVIIa partition into these PS-rich microdomains. Unfortunately, little is known about how membrane microdomain composition influences the activity of blood-clotting proteases, which is typically not under experimental control even in "simple" model membranes. Our laboratories have developed and applied new technologies for studying membrane proteins to gain insights into how blood-clotting protease-cofactor pairs assemble and function on membrane surfaces. This includes using a novel, nanoscale bilayer system (Nanodiscs) that permits assembling blood-clotting protease-cofactor pairs on stable bilayers containing from 65 to 250 phospholipid molecules per leaflet. We have used this system to investigate how local (nanometer-scale) changes in phospholipid bilayer composition modulate TF:FVIIa activity. We have also used detailed molecular-dynamics simulations of nanoscale bilayers to provide atomic-scale predictions of how the membrane-binding domain of factor VIIa interacts with PS in membranes.

PMID:
18691494
[PubMed - indexed for MEDLINE]
PMCID:
PMC2836762
Free PMC Article

Images from this publication.See all images (1)Free text

Figure 1
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk