Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Am Chem Soc. 2008 Aug 27;130(34):11486-93. doi: 10.1021/ja803086r. Epub 2008 Aug 5.

Second-generation difluorinated cyclooctynes for copper-free click chemistry.

Author information

  • 1Departments of Chemistry, University of California, Berkeley, California 94720, USA.

Abstract

The 1,3-dipolar cycloaddition of azides and activated alkynes has been used for site-selective labeling of biomolecules in vitro and in vivo. While copper catalysis has been widely employed to activate terminal alkynes for [3 + 2] cycloaddition, this method, often termed "click chemistry", is currently incompatible with living systems because of the toxicity of the metal. We recently reported a difluorinated cyclooctyne (DIFO) reagent that rapidly reacts with azides in living cells without the need for copper catalysis. Here we report a novel class of DIFO reagents for copper-free click chemistry that are considerably more synthetically tractable. The new analogues maintained the same elevated rates of [3 + 2] cycloaddition as the parent compound and were used for imaging glycans on live cells. These second-generation DIFO reagents should expand the use of copper-free click chemistry in the hands of biologists.

PMID:
18680289
[PubMed - indexed for MEDLINE]
PMCID:
PMC2646667
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Scheme 1
Scheme 2
Scheme 3
Figure 2
Figure 3
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Write to the Help Desk