Format

Send to:

Choose Destination
See comment in PubMed Commons below
Diabetes. 2008 Nov;57(11):3112-21. doi: 10.2337/db08-0516. Epub 2008 Aug 4.

Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations.

Author information

  • 1Department of Clinical Sciences, University Hospital Malmö, Clinical Research Center, Lund University, Malmö, Sweden. marju.orho-melander@med.lu.se

Abstract

OBJECTIVE:

Using the genome-wide association approach, we recently identified the glucokinase regulatory protein gene (GCKR, rs780094) region as a novel quantitative trait locus for plasma triglyceride concentration in Europeans. Here, we sought to study the association of GCKR variants with metabolic phenotypes, including measures of glucose homeostasis, to evaluate the GCKR locus in samples of non-European ancestry and to fine- map across the associated genomic interval.

RESEARCH DESIGN AND METHODS:

We performed association studies in 12 independent cohorts comprising >45,000 individuals representing several ancestral groups (whites from Northern and Southern Europe, whites from the U.S., African Americans from the U.S., Hispanics of Caribbean origin, and Chinese, Malays, and Asian Indians from Singapore). We conducted genetic fine-mapping across the approximately 417-kb region of linkage disequilibrium spanning GCKR and 16 other genes on chromosome 2p23 by imputing untyped HapMap single nucleotide polymorphisms (SNPs) and genotyping 104 SNPs across the associated genomic interval.

RESULTS:

We provide comprehensive evidence that GCKR rs780094 is associated with opposite effects on fasting plasma triglyceride (P(meta) = 3 x 10(-56)) and glucose (P(meta) = 1 x 10(-13)) concentrations. In addition, we confirmed recent reports that the same SNP is associated with C-reactive protein (CRP) level (P = 5 x 10(-5)). Both fine-mapping approaches revealed a common missense GCKR variant (rs1260326, Pro446Leu, 34% frequency, r(2) = 0.93 with rs780094) as the strongest association signal in the region.

CONCLUSIONS:

These findings point to a molecular mechanism in humans by which higher triglycerides and CRP can be coupled with lower plasma glucose concentrations and position GCKR in central pathways regulating both hepatic triglyceride and glucose metabolism.

PMID:
18678614
[PubMed - indexed for MEDLINE]
PMCID:
PMC2570409
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk