Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biol Pharm Bull. 2008 Aug;31(8):1523-9.

Protective effects of salidroside against acetaminophen-induced toxicity in mice.

Author information

  • 1Key Laboratory of Organism Functional Factors of the Changbai Mountain, College of Pharmacy, Yanbian University, Jilin Province, China.

Abstract

The protective effect of salidroside (SDS) isolated from Rhodiola sachalinensis A. BOR. (Crassulaceae), was investigated in acetaminophen (APAP)-induced hepatic toxicity mouse model in comparison to N-acetylcysteine (NAC). Drug-induced hepatotoxicity was induced by an intraperitoneal (i.p.) injection of 300 mg/kg (sub-lethal dose) of APAP. SDS was given orally to mice at a dose of 50 or 100 mg/kg 2 h before the APAP administration in parallel with NAC. Mice were sacrificed 12 h after the APAP injection to determine aspartate aminotransferase (AST), alanine aminotransferase (ALT), and tumor necrosis factor-alpha (TNF-alpha) levels in serum and glutathione (GSH) depletion, malondialdehyde (MDA) accumulation, and caspase-3 expression in liver tissues. SDS significantly protected APAP-induced hepatotoxicity for SDS improved mouse survival rates better than NAC against a lethal dose of APAP and significantly blocked not only APAP-induced increases of AST, ALT, and TNF-alpha but also APAP-induced GSH depletion and MDA accumulation. Histopathological and immunohistochemical analyses also demonstrated that SDS could reduce the appearance of necrosis regions as well as caspase-3 and hypoxia inducible factor-1alpha (HIF-1alpha) expression in liver tissue. Our results indicated that SDS protected liver tissue from the APAP-induced oxidative damage via preventing or alleviating intracellular GSH depletion and oxidation damage, which suggested that SDS would be a potential antidote against APAP-induced hepatotoxicity.

PMID:
18670083
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Write to the Help Desk