Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurochem. 2008 Nov;107(3):602-15. doi: 10.1111/j.1471-4159.2008.05587.x. Epub 2008 Aug 11.

Temporal profiling of changes in phosphatidylinositol 4,5-bisphosphate, inositol 1,4,5-trisphosphate and diacylglycerol allows comprehensive analysis of phospholipase C-initiated signalling in single neurons.

Author information

  • 1Department of Cell Physiology & Pharmacology, University of Leicester, Leicester, UK.

Abstract

Phosphatidylinositol 4,5-bisphosphate (PIP(2)) fulfils vital signalling roles in an array of cellular processes, yet until recently it has not been possible selectively to visualize real-time changes in PIP(2) levels within living cells. Green fluorescent protein (GFP)-labelled Tubby protein (GFP-Tubby) enriches to the plasma membrane at rest and translocates to the cytosol following activation of endogenous Galpha(q/11)-coupled muscarinic acetylcholine receptors in both SH-SY5Y human neuroblastoma cells and primary rat hippocampal neurons. GFP-Tubby translocation is independent of changes in cytosolic inositol 1,4,5-trisphosphate and instead reports dynamic changes in levels of plasma membrane PIP(2). In contrast, enhanced GFP (eGFP)-tagged pleckstrin homology domain of phospholipase C (PLCdelta1) (eGFP-PH) translocation reports increases in cytosolic inositol 1,4,5-trisphosphate. Comparison of GFP-Tubby, eGFP-PH and the eGFP-tagged C1(2) domain of protein kinase C-gamma [eGFP-C1(2); to detect diacylglycerol] allowed a selective and comprehensive analysis of PLC-initiated signalling in living cells. Manipulating intracellular Ca(2+) concentrations in the nanomolar range established that GFP-Tubby responses to a muscarinic agonist were sensitive to intracellular Ca(2+) up to 100-200 nM in SH-SY5Y cells, demonstrating the exquisite sensitivity of agonist-mediated PLC activity within the range of physiological resting Ca(2+) concentrations. We have also exploited GFP-Tubby selectively to visualize, for the first time, real-time changes in PIP(2) in hippocampal neurons.

PMID:
18665913
[PubMed - indexed for MEDLINE]
PMCID:
PMC2779467
Free PMC Article

Images from this publication.See all images (5)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing Icon for PubMed Central
    Loading ...
    Write to the Help Desk