Format

Send to:

Choose Destination
See comment in PubMed Commons below
Curr Opin Nephrol Hypertens. 2008 Jul;17(4):368-72. doi: 10.1097/MNH.0b013e3282ffd994.

The Klotho gene family and the endocrine fibroblast growth factors.

Author information

  • 1Department of Hygiene and Public Health I, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan.

Abstract

PURPOSE OF REVIEW:

This review summarizes recent progress in understanding of Klotho and betaKlotho function in the regulation of tissue-specific metabolic activity of the endocrine fibroblast growth factors (FGF19, FGF21, and FGF23).

RECENT FINDINGS:

The Klotho gene encodes a single-pass transmembrane protein and functions as an aging-suppressor gene, which extends lifespan when overexpressed and accelerates the development of aging-like phenotypes when disrupted in mice. FGF23 is a bone-derived hormone that regulates phosphate and vitamin D metabolism. It has been shown that Klotho-deficient mice and FGF23 knockout mice exhibit identical phenotypes. This observation led to the identification of Klotho as a cofactor essential for the interaction between FGF23 and fibroblast growth factor receptors. In addition to the Klotho-FGF23 axis, recent studies have shown that betaKlotho, a Klotho family protein, also functions as a cofactor required for FGF19 and FGF21 signaling and determines tissue-specific metabolic activities of FGF19 and FGF21.

SUMMARY:

Recent mouse genetic studies have broadened our understanding of molecular pathways involved in mineral and bile acid homeostasis regulated by FGF23 and FGF19, respectively. The FGF19 subfamily of ligands requires the Klotho gene family of transmembrane proteins for their tissue-specific bioactivity. Further investigations on endocrine axes mediated by the Klotho family and FGF19 subfamily members are expected to provide new insights into the molecular mechanisms by which the endocrine fibroblast growth factors regulate bile acid, energy, and phosphate/vitamin D metabolism.

PMID:
18660672
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Write to the Help Desk