Display Settings:

Format

Send to:

Choose Destination
J Biomol Screen. 2008 Jul;13(6):443-8. doi: 10.1177/1087057108319644.

The future of high-throughput screening.

Author information

  • 1Novartis Institutes of BioMedical Research, Center of Proteomic Chemistry, Basel, Switzerland. Lorenz.Mayr@novartis.com

Abstract

High-throughput screening (HTS) is a well-established process in lead discovery for pharma and biotech companies and is now also being set up for basic and applied research in academia and some research hospitals. Since its first advent in the early to mid-1990s, the field of HTS has seen not only a continuous change in technology and processes but also an adaptation to various needs in lead discovery. HTS has now evolved into a quite mature discipline of modern drug discovery. Whereas in previous years, much emphasis has been put toward a steady increase in capacity ("quantitative increase") via various strategies in the fields of automation and miniaturization, the past years have seen a steady shift toward higher content and quality ("quality increase") for these biological test systems. Today, many experts in the field see HTS at the crossroads with the need to decide either toward further increase in throughput or more focus toward relevance of biological data. In this article, the authors describe the development of HTS over the past decade and point out their own ideas for future directions of HTS in biomedical research. They predict that the trend toward further miniaturization will slow down with the implementation of 384-well, 1536-well, and 384 low-volume-well plates. The authors predict that, ultimately, each hit-finding strategy will be much more project related, tailor-made, and better integrated into the broader drug discovery efforts.

PMID:
18660458
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk