Display Settings:

Format

Send to:

Choose Destination
Neuroimage. 2009 Aug;47 Suppl 2:T98-106. doi: 10.1016/j.neuroimage.2008.06.034. Epub 2008 Jul 8.

Resolving crossings in the corticospinal tract by two-tensor streamline tractography: Method and clinical assessment using fMRI.

Author information

  • 1Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, MA 02115, USA.

Abstract

An inherent drawback of the traditional diffusion tensor model is its limited ability to provide detailed information about multidirectional fiber architecture within a voxel. This leads to erroneous fiber tractography results in locations where fiber bundles cross each other. This may lead to the inability to visualize clinically important tracts such as the lateral projections of the corticospinal tract. In this report, we present a deterministic two-tensor eXtended Streamline Tractography (XST) technique, which successfully traces through regions of crossing fibers. We evaluated the method on simulated and in vivo human brain data, comparing the results with the traditional single-tensor and with a probabilistic tractography technique. By tracing the corticospinal tract and correlating with fMRI-determined motor cortex in both healthy subjects and patients with brain tumors, we demonstrate that two-tensor deterministic streamline tractography can accurately identify fiber bundles consistent with anatomy and previously not detected by conventional single-tensor tractography. When compared to the dense connectivity maps generated by probabilistic tractography, the method is computationally efficient and generates discrete geometric pathways that are simple to visualize and clinically useful. Detection of crossing white matter pathways can improve neurosurgical visualization of functionally relevant white matter areas.

PMID:
18657622
[PubMed - indexed for MEDLINE]
PMCID:
PMC2746909
Free PMC Article

Images from this publication.See all images (6)Free text

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk