Display Settings:


Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Langmuir. 2008 Sep 2;24(17):9707-16. doi: 10.1021/la8008943. Epub 2008 Jul 24.

Controlled growth of two-dimensional and one-dimensional ZnO nanostructures on indium tin oxide coated glass by direct electrodeposition.

Author information

  • 1WATLab and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.


A simple electrochemical deposition technique is used to deposit ZnO nanostructures with diverse morphology directly on ITO-coated glass substrates at 70 degrees C. The concentration of the Zn(NO 3) 2.6H 2O electrolyte is important to controlling the dimensionality of the nanostructures, with formation of one-dimensional (1D) nanospikes and nanopillars (with 50-500 nm diameter) below 0.01 M and of two-dimensional (2D) nanowalls and nanodisks (with 50-100 nm wall/disk thickness) above 0.05 M. Glancing-incidence X-ray diffraction study shows their wurtzite structure and confirms the change in the preferred crystal plane orientation with the dimensionality of ZnO nanostructures. UV-vis spectroscopy reveals a higher transmittance from 2D nanostructures than from 1D nanostructures and their optical direct band gaps estimated to be 3.12-3.27 eV. Depth-profiling X-ray photoemission studies show the presence of Zn(OH) 2 outer layers on the ZnO nanostructures, with a higher Zn(OH) 2 moiety for 2D nanostructures relative to 1D nanostructures. Furthermore, a substantial quantity of Cl (provided by the KCl supporting electrolyte) is detected throughout the 2D nanostructures only. The photoemission data therefore affirm our proposed growth mechanism that involves capping of the preferred [0001] growth direction by Cl (-) ions under fast hydroxylation kinetics condition as observed at a higher Zn(NO 3) 2.6H 2O electrolyte concentration.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk