Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Mol Cell Biol. 2008 Oct;28(19):6010-21. doi: 10.1128/MCB.00693-08. Epub 2008 Jul 21.

Architecture of the SWI/SNF-nucleosome complex.

Author information

  • 1Department of Biochemistry and Molecular Biology, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL 62901-4413, USA.

Abstract

The SWI/SNF complex disrupts and mobilizes chromatin in an ATP-dependent manner. SWI/SNF interactions with nucleosomes were mapped by DNA footprinting and site-directed DNA and protein cross-linking when SWI/SNF was recruited by a transcription activator. SWI/SNF was found by DNA footprinting to contact tightly around one gyre of DNA spanning approximately 50 bp from the nucleosomal entry site to near the dyad axis. The DNA footprint is consistent with nucleosomes binding to an asymmetric trough of SWI/SNF that was revealed by the improved imaging of free SWI/SNF. The DNA site-directed cross-linking revealed that the catalytic subunit Swi2/Snf2 is associated with nucleosomes two helical turns from the dyad axis and that the Snf6 subunit is proximal to the transcription factor recruiting SWI/SNF. The highly conserved Snf5 subunit associates with the histone octamer and not with nucleosomal DNA. The model of the binding trough of SWI/SNF illustrates how nucleosomal DNA can be mobilized while SWI/SNF remains bound.

PMID:
18644858
[PubMed - indexed for MEDLINE]
PMCID:
PMC2547009
Free PMC Article

Images from this publication.See all images (9)Free text

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk