Format

Send to:

Choose Destination
See comment in PubMed Commons below
Chem Res Toxicol. 2008 Sep;21(9):1698-705. doi: 10.1021/tx800101p. Epub 2008 Jul 18.

Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects.

Author information

  • 1Industrial Toxicology and Occupational Medicine Unit, Université Catholique de LouVain, Brussels, Belgium.

Abstract

Experimental studies indicate that carbon nanotubes (CNTs) have the potential to induce adverse pulmonary effects, including alveolitis, fibrosis, and genotoxicity in epithelial cells. Here, we explored the physicochemical determinants of these toxic responses with progressively and selectively modified CNTs: ground multiwall CNTs modified by heating at 600 degrees C (loss of oxygenated carbon functionalities and reduction of oxidized metals) or at 2400 degrees C (annealing of structural defects and elimination of metals) and by grinding the material that had been heated at 2400 degrees C before (introduction of structural defects in a metal-deprived framework). The CNTs were administered intratracheally (2 mg/rat) to Wistar rats to evaluate the short-term response (3 days) in bronchoalveolar lavage fluid (LDH, proteins, cellular infiltration, IL-1beta, and TNF-alpha). The long-term (60 days) lung response was assessed biochemically by measuring the lung hydroxyproline content and histologically. In vitro experiments were also performed on rat lung epithelial cells to assess the genotoxic potential of the modified CNTs with the cytokinesis block micronucleus assay. The results show that the acute pulmonary toxicity and the genotoxicity of CNT were reduced upon heating but restored upon grinding, indicating that the intrinsic toxicity of CNT is mainly mediated by the presence of defective sites in their carbon framework.

PMID:
18636756
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk